Citizen science has become key to biodiversity monitoring but critically depends on accurate quality control that is scalable and tailored to the focal region. We developed FlorID, a free-to-use identification service for all native and many non-native plants of Switzerland. FlorID can identify >3000 species, using vision transformers trained on 1.5M photos, and ecological predictions from multilayer perceptrons, trained on 6.7M occurrence observations and 20 high-resolution environmental variables. Embedded in a free-to-use application programming interface, FlorID can be accessed directly, via webservice, and via FlorApp smartphone application. If multiple images and spatiotemporal location are available, FlorID correctly identifies 93% of field observations and has a top-5 accuracy of 99%. Ecological predictions boost identification success especially for native species with distinct distributions. By evaluating information on appearance and fine-grained ecology, FlorID is a blueprint for similar solutions targeting different taxa or regions, and a basis for developments like automated community inventories.
Siehe DOISiehe Institutional Repository DORA