Projects

Nowcast and predict forest condition from TreeNet data with the help of machine learning.

The data for avalanche forecasting need to be accessible in high quality as soon as these become available. Any measurement errors, anomalies and data gaps diminish forecast accuracy. We aim to develop algorithms for real-time data cleansing by applying state-of-the-art machine learning approaches.

Publications

Svoboda J., Ruesch M., Liechti D., Jones C., Volpi M., Zehnder M., Schweizer J. (2025) Towards deep-learning solutions for classification of automated snow height measurements (CleanSnow v1.0.2). Geosci. Model Dev. 18(5), 1829-1849. doi:10.5194/gmd-18-1829-2025 Institutional Repository DORA

Svoboda J., Zehnder M., Ruesch M., Liechti D., Jones C., Volpi M., … Schweizer J. (2024) Classification of snow depth measurements for tracking plant phenological shifts in Alpine regions. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, & C. Zhang (Eds.), Advances in neural information processing systems 37 (NeurIPS 2024). San Diego: NeurIPS. (11 pp.). Institutional Repository DORA

×