Publications

Kükenbrink D., Marty M., Rehush N., Abegg M., Ginzler C. (2025) Evaluating the potential of handheld mobile laser scanning for an operational inclusion in a national forest inventory – A Swiss case study. Remote Sens. Environ. 321, 114685 (15 pp.). doi:10.1016/j.rse.2025.114685 Institutional Repository DORA

Puliti S., Lines E.R., Müllerová J., Frey J., Schindler Z., Straker A., … Astrup R. (2025) Benchmarking tree species classification from proximally sensed laser scanning data: introducing the FOR ‐ species20K dataset. Methods Ecol. Evol. doi:10.1111/2041-210X.14503 Institutional Repository DORA

Beloiu Schwenke M., Xia Z., Berger E., Overney N., Reichmuth C., Rehush N., Griess V.C. (2024) Baumartenerkennung in Schweizer Mischwäldern mit Deep-Learning-basierter Objekterkennung. Infoblatt Arbeitsgr. Waldplan. manag. (2), 1-5. Institutional Repository DORA

Bornand A., Abegg M., Morsdorf F., Rehush N. (2024) Completing 3D point clouds of individual trees using deep learning. Methods Ecol. Evol. 15(11), 2010-2023. doi:10.1111/2041-210X.14412 Institutional Repository DORA

Hristova H., Murtiyoso A., Kukenbrink D., Marty M., Abegg M., Fischer C., … Rehush N. (2024) Viewing the forest in 3D: how spherical stereo videos enable low-cost reconstruction of forest plots. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 17612-17625. doi:10.1109/JSTARS.2024.3462999 Institutional Repository DORA

Murtiyoso A., Cabo C., Singh A., Obaya D.P., Cherlet W., Stoddart J., … Mokroš M. (2024) A review of software solutions to process ground-based point clouds in forest applications. Curr. Forestry Rep. 10, 401-419. doi:10.1007/s40725-024-00228-2 Institutional Repository DORA

Beloiu M., Heinzmann L., Rehush N., Gessler A., Griess V.C. (2023) Individual tree-crown detection and species identification in heterogeneous forests using aerial RGB imagery and deep learning. Remote Sens. 15(5), 1463 (17 pp.). doi:10.3390/rs15051463 Institutional Repository DORA

Bornand A., Rehush N., Morsdorf F., Thürig E., Abegg M. (2023) Individual tree volume estimation with terrestrial laser scanning: evaluating reconstructive and allometric approaches. Agric. For. Meteorol. 341, 109654 (13 pp.). doi:10.1016/j.agrformet.2023.109654 Institutional Repository DORA

Fol C.R., Kükenbrink D., Rehush N., Murtiyoso A., Griess V.C. (2023) Evaluating state-of-the-art 3D scanning methods for stem-level biodiversity inventories in forests. Int. J. Appl. Earth Obs. Geoinf. 122, 103396 (12 pp.). doi:10.1016/j.jag.2023.103396 Institutional Repository DORA

Hristova H., Abegg M., Fischer C., Rehush N. (2022) Monocular depth estimation in forest environments. In A. Yilmaz, J. D. Wegner, R. Qin, F. Remondino, T. Fuse, & I. Toschi (Eds.), The international archives of the photogrammetry, remote sensing and spatial information sciences: Vol. XLII-B2-2022. Congress "Imaging today, foreseeing tomorrow", commission II. Hannover: ISPRS. 1017-1023. doi:10.5194/isprs-archives-XLIII-B2-2022-1017-2022 Institutional Repository DORA

Kükenbrink D., Allgaier Leuch B., Rehush N., Abegg M., Bornand A., Hristova H., … Ginzler C. (2022) Aktuelle Arbeiten mit naher Fernerkundung zur detaillierten Erfassung von Waldstrukturen. Infoblatt Arbeitsgr. Waldplan. manag. (1), 18-20. Institutional Repository DORA

Murtiyoso A., Hristova H., Rehush N., Griess V.C. (2022) Low-cost mapping of forest under-storey vegetation using spherical photogrammetry. In A. Nüchter, P. Grussenmeyer, & T. Kersten (Eds.), The international archives of the photogrammetry, remote sensing and spatial information sciences: Vol. XLVIII-2/W1-2022. ISPRS TC II. 7th international workshop LowCost 3D - sensors, algorithms, applications. Hannover: ISPRS. 185-190. doi:10.5194/isprs-archives-XLVIII-2-W1-2022-185-2022 Institutional Repository DORA

Wang Z., Ginzler C., Eben B., Rehush N., Waser L.T. (2022) Assessing changes in mountain treeline ecotones over 30 years using CNNs and historical aerial images. Remote Sens. 14(9), 2135 (22 pp.). doi:10.3390/rs14092135 Institutional Repository DORA

Waser L., Rüetschi M., Rehush N. (2021) Künstliche Intelligenz im Wald - der neue «Waldmischungsgrad LFI». Bündnerwald. 74(5), 54-57. Institutional Repository DORA

Waser L.T., Rüetschi M., Psomas A., Small D., Rehush N. (2021) Mapping dominant leaf type based on combined Sentinel-1/-2 data – Challenges for mountainous countries. ISPRS J. Photogramm. Remote Sens. 180, 209-226. doi:10.1016/j.isprsjprs.2021.08.017 Institutional Repository DORA

Ginzler C., Price B., Bösch R., Fischer C., Hobi M.L., Psomas A., … Waser L.T. (2019) Area-wide products. In C. Fischer & B. Traub (Eds.), Managing forest ecosystems: Vol. 35. Swiss National Forest Inventory – Methods and models of the fourth assessment. Cham: Springer. 125-142. doi:10.1007/978-3-030-19293-8_7 Institutional Repository DORA

Rehush N., Abegg M., Waser L.T., Brändli U.B. (2018) Identifying tree-related microhabitats in TLS point clouds using machine learning. Remote Sens. 10(11), 1735 (23 pp.). doi:10.3390/rs10111735 Institutional Repository DORA

Rehush N., Brändli U.B. (2018) Mikrohabitate mit terrestrischem Laserscanning (TLS) erfassen. Infoblatt Arbeitsgr. Waldplan. manag. (2), 10-13. Institutional Repository DORA

Rehush N., Waser L.T. (2017) Assessing the structure of primeval and managed beech forests in the Ukrainian Carpathians using remote sensing. Can. J. For. Res. 47(1), 63-72. doi:10.1139/cjfr-2016-0253 Institutional Repository DORA

Waser L.T., Ginzler C., Rehush N. (2017) Wall-to-wall tree type mapping from countrywide airborne remote sensing surveys. Remote Sens. 9(8), 766 (24 pp.). doi:10.3390/rs9080766 Institutional Repository DORA

×