1. Fragmentation of habitat, for example by intensive agricultural practices, can be detrimental to local biodiversity. However, it often remains unclear whether such biodiversity declines are caused by loss of habitat area or increased fragmentation, and how habitat quality factors into it. In our study system, vegetated vineyards are typically small, and isolated from one another, potentially limiting the distribution and dispersal of organisms.
2. In a full-factorial experiment of a priori selected vegetated vineyard patches of differing size and fragmentation, we aimed to disentangle the effects of habitat area (area of vegetated vineyards), habitat fragmentation (number of vegetated vineyards per 100 ha) and field-scale ground vegetation density on ground beetle, leafhopper and wild bee communities using a combined framework of multiscale and multispecies modelling (Hierarchical Model of Species Communities).
3. We demonstrate variable effects of habitat area, fragmentation and local ground vegetation density on the three insect groups: Increased habitat area at fine scales favours higher species richness of leafhoppers, while local vegetation density boosts species richness of both leafhoppers and ground beetles, whereas no community-level responses were detected for wild bees.
We conclude that increased ground vegetation density at both field and landscape scales (i.e. higher habitat area) favours more diverse and abundant insect communities, while fragmentation effects are highly variable and species specific. In addition, our results highlight that mainly ground beetles and leafhoppers will benefit from simple ground greening measures in vineyards, while for wild bees environmental factors other than the ones tested here may drive community structure.
4. We recommend increasing the number and area of vegetated vineyards (even at small spatial scales) requiring more nature-friendly farming practices especially regarding a reduction or renunciation from herbicide applications, while the within-field vegetation density should optimally be intermediate or high to favour a diverse insect community.
See DOIVoir Institutional Repository DORA